Academic programme component

31.05.01 General Medicine programme

Б1.0.15 Biochemistry discipline code

ASSESSMENT MATERIALS

Discipline _____ 61.0. 15 Biochemistry _____

Author(s): L.A. Mishanina

Director of Medicine and Life Sciences Institute,

Ph.D. in Biological Sciences, Docent Approved at the Clinical Medicine Department meeting Record no._____ dated

Head of the department Krivenko O.G.

signature

Code and	Code and indicator of competence	Resul	ts of training in the disciplin	e (module)	Formative assessment	Interim assessment
competence name	mastery	To know	To be able to	To have		
VK-1 Can design		- the chemical and	- interpret the results of	- skills in applying	- a set of tasks for	Formative assessment
action plans and	ИД-1УК-1 Applies a	biological essence of	biochemical studies;	biochemical methods for	practical work;	results
apply systematic	systematic approach	the processes	- to determine the	examination of the patient.	- test tasks;	Examination
approach to	in search and	occurring in a living	pathological condition	- skills in decoding	 colloquium topics 	
critical analysis of	analytical activities to	organism at the	based on laboratory	laboratory analysis.		
problem	solve the tasks set	molecular and	analysis data, to explain the	- information about		
situations		cellular levels;	mechanism of action of	changes in biochemical		
		- the structure and	drugs and other substances	parameters, taking into		
	ОПК-5.2. Defines	properties of the main	on the human body;	account the laws of the		
	and analyzes	classes of	- interpret the results of the	course of pathological		
ОПК-5 Can	morphological,	biologically	most common methods of	processes.		
analyze	functional,	important	laboratory and functional			
morphofunctional	physiological states	compounds, the main	diagnostics.			
and physiological	and pathological	ways of their				
indicators as well	processes of the	transformation, the				
as pathological	human body based on	role of cell				
processes in	knowledge of	membranes and				
human body to	biomolecules,	transport systems in				
achieve	subcellular cultures,	metabolism in the				
professional goals	their biochemical	body;				
	characteristics,	- basic biochemical				
	metabolic pathways	constants and their				
	and principles of	variability in				
	regulation	pathological				
		processes.				

1. Criteria and assessment of competencies and their mastery indicators, formed by the discipline

Competencies mastery	Criteria	and grading system of competencies ma	stery (indicators of their mastery) asso	essment
(their indicators) indices	Insufficient («unsatisfactory»)	Sufficient («satisfactory»)	Above average («good»)	Advance («excellent»)
Extent of knowledge	Knowledge level is below the required. Major mistakes occurred.	Minimally allowed knowledge level. Minor mistakes occurred.	Knowledge level corresponds well to the educational programme. Minor errors occurred.	Knowledge level corresponds well to the educational programme.
Ability mastery	Basic abilities were not demonstrated during standard tasks completion. Major mistakes occurred.	Basic abilities were demonstrated. All tasks were completed, yet not in full (clarifications are absent, conclusions are incomplete)	All main abilities were demonstrated. All tasks were completed in full, yet with few errors.	All main abilities were demonstrated. All main and additional tasks were completed without mistakes or errors.
Skill mastery (having experience)	Basic skills were not demonstrated during standard tasks completion. Major mistakes occurred	Minimum set of skills for standard tasks completion with minor error, is acquired.	Basic skills were demonstrated in completing standard tasks, yet with few errors.	All main skills were demonstrated in completing main and additional tasks without mistakes or errors.
Competence mastery characteristics	Competencies have not been acquired. The acquired knowledge, skills, and abilities are not enough to solve practical (professional) tasks. OR Insufficient number of credit points as per the established range.	Competencies mastery is adequate. The acquired knowledge, abilities, and skills are mostly sufficient to complete professional tasks.	Competencies mastery mainly satisfies the requirements. The acquired knowledge, abilities, and skills are mainly sufficient to complete professional tasks.	Competencies mastery satisfies the requirements to the full extent. The acquired knowledge, abilities, and skills are fully sufficient to complete difficult professional tasks, including non-standard.

2. Competencies mastery (indicators of their mastery) level assessment

3. Criteria and grading system of the *formative assessment tasks*

3.1 Criteria and grading system of laboratory work

The list of laboratory works, order of completion and presentation, requirements for results, structure, and contents of laboratory work report, etc., are presented in the methodological guidelines on mastering the discipline as well as in MAU LMS Moodle.

Grade/points	Assessment criteria
Excellent	The task is completed correctly and in full. The laboratory report is well-prepared and satisfies the requirements. Answers to the teacher's questions (during the presentation) are full.
Good	The task is completed in full, yet without sufficient justification or a minor error, which does not impact the argumentation sequence, occurred. All task completion requirements are satisfied.
Satisfactory	The task is completed partially, with mistakes. Adequate level of completed laboratory or practical tasks. Majority of task completion requirements are satisfied.
Unsatisfactory	The task has not been completed.

3.2 Criteria and grading system of tests

The list of test questions and tasks, as well as test procedure description are presented in the methodological guidelines on mastering the discipline, as well as in MAU LMS Moodle.

Assessment materials include a typical test variant:

1. What is the name of the substance with which the enzyme interacts?

a) apoenzyme;

b) coenzyme;

c) isoenzyme;

d) substrate;

e) holoenzyme.

2. Which enzyme, which is part of saliva, has an antibacterial effect?

a) amylase;

b) lysozyme;

c) maltase;

d) trypsin;

e) sucrose.

3. Coenzyme is:

a) the protein part of a complex enzyme;

b) the non-protein part of a complex enzyme that is strongly associated with the

apoenzyme;

c) the non-protein part of a simple enzyme;

d) the non-protein part of a complex enzyme that is loosely bound to the apoenzyme.

4. The enzyme exhibits absolute specificity to the substrate:

a) pepsin;

b) chymotrypsin;

c) urease;

d) lipase.

5. Which enzyme is classified as glycosidase?

a) cholesterol;

b) amylase;

c) trypsin;

d) phospholipase.

6. What is the difference between enzymes and inorganic catalysts:

a) they do not change the direction of the reaction;

b) do not shift the equilibrium towards a direct or reverse reaction;

c) have a high specificity of action;

d) are not consumed during the reaction process.

7. The greatest activity of ALT is found in:

a) lungs;

b) liver;

c) skeletal muscles;

d) kidneys;

e) the pancreas.

8. With this type of inhibition, the inhibitor binds to the active center of the enzyme and prevents the formation of an enzyme-substrate complex:

a) reversible;

b) irreversible;

c) competitive;

d) uncompetitive.

9. Which enzymes catalyze the breaking of C–O, C–C, C–N bonds and reversible reactions of cleavage of various groups from substrates in a non-hydrolytic way?

a) oxidoreductases;

b) ligases;

c) hydrolases;

d) transferases;

e) lyases;

f) isomerases.

10. The Michaelis constant is the concentration of the substrate at which the reaction rate a) is minimal;

b) equal to half of the maximum;

c) is the maximum.

11. What is the relative specificity of an enzyme?

a) the ability of an enzyme to catalyze the transformation of several substrates having the same type of bond;

b) the ability of the enzyme to catalyze the conversion of only one stereoisomer;c) the ability of the enzyme to catalyze the transformation of only one substrate.

12. The content of LDH1 and LDH2 isoenzymes is highest in:

a) the heart;

b) skeletal muscles;

c) liver;

d) tumor cells;

e) the pancreas.

13. What is the name of the enzyme center where the substrate is attached?

a) allosteric;

b) catalytic;

c) active.

14. What class of enzymes do dehydrogenases belong to?

a) transferases;

b) ligases;

c) hydrolases;

d) oxidoreductases;

e) lyases;

f) Isomerases.

15. Which enzyme controls starch hydrolysis?

a) trypsin;

b) lipase;

c) phospholipase;

d) amylase;

e) cholesterol.

16. What are proenzymes?

a) denatured enzymes;

b) inactive enzyme precursors;

c) fragments of enzyme molecules;

d) non-protein components.

17. Which compounds are lipase activators?

a) amino acids;

b) bile acids;

c) phospholipase;

d) trypsin;

e) enterokinase.

18. Enzymes that catalyze the transfer reactions of groups of atoms from a molecule of one substance to a molecule of another:

a) ligases;

b) lyases;

c) transferases;

d) hydrolases;

e) isomerases;

f) Oxidoreductases.

19. Transcription enzyme:

1) DNA polymerase;

2) DNA helicase;

3) RNA polymerase;

4) DNA topoisomerase.

20. Proteases catalyze the cleavage of:

a) ester bonds;

b) glycoside bonds;

c) peptide bonds.

Grade/points	Assessment criteria
Excellent	90-100% of correct answers
Good	70-89% of correct answers
Satisfactory	50-69% of correct answers
Unsatisfactory	49% or less of correct answers

3.3. Criteria and grading system of colloquiums

The recommendations for colloquium preparation are presented in the methodological guidelines on mastering the discipline, as well as in MAU LMS Moodle.

Assessment materials include typical colloquium topics:

1. Enzymes (definition). The structure of enzymes, the active center. Simple and complex enzymes. Apoenzyme. The cofactor.

2. General properties and differences of enzymes and inorganic catalysts.

3. Localization of enzymes in cells and tissues (general, organospecific and organellospecific enzymes).

4. Mechanisms of action of enzymes (theories of E. Fischer, D. Koshland).

5. The main stages of enzymatic catalysis (3 stages).

6. The specificity of the action of enzymes (tell us about the absolute and relative specificity, give examples).

7. Dependence of the rate of enzymatic reaction on the concentration of the substrate. The Michaelis–Menten equation.

8. Dependence of the rate of the enzymatic reaction on the concentration of the enzyme (graph).

9. Dependence of the rate of the enzymatic reaction on the temperature of the medium (temperature optimum).

10. Dependence of the rate of enzymatic reaction on the pH of the medium (optimum pH).

11. Regulation of enzyme activity (specific, non-specific).

12. The role of hormones and secondary messengers in the regulation of enzyme activity.

13. Classification of enzymes (tell us about 6 classes of enzymes).

14. Basic principles of enzyme diagnostics. Enzymodiagnostics of heart and liver diseases (the activity of which enzymes increases in the blood).

Grade	Assessment criteria
Excellent	A complete, detailed answer to the question(s) posed. Student uses terminology fluently. Deep understanding of the programme material, as well as consistent, competent answers. Fluency in the material, correct justification of the decisions made.
Good	A complete, detailed answer to the question(s) posed. Clear structure and logical sequence in the answer. Understanding of the programme material, its competent and consistent presentation, but minor inaccuracies in definitions are made.
Satisfactory	An insufficiently detailed and consistent answer to the question(s) posed. Knowledge of only the basic material. Inaccuracies and difficulties with the formulation of definitions are made.
Unsatisfactory	No answer has been given to the basic questions on the discipline

3.4. Criteria and grading system of the class attendance

Student attendance is determined in percentage correlation

Points	Assessment criteria
20	attendance 75-100%
17	attendance 50-74%
14	Attendance is less than 50%

4. Criteria and grading system of the discipline (module) results during the <u>interim</u>

<u>assessment</u>

Criteria and grading system of the discipline (module) results

(examination)

For the disciplines that are graded upon examination, the interim assessment result is comprised of points gained during the formative assessment and after the examination:

Assessment materials include the list of questions and tasks for the examination:

1. Chemical nature, physico-chemical properties and biological role of enzymes. Localization and compartmentalization of enzymes in cells and tissues.

2. The mechanism of action of enzymes: the theories of Fischer, Koshland. The stages of enzymatic catalysis.

3. Kinetics of enzymatic reactions. Regulation of enzyme activity: nonspecific, specific. The role of hormones and secondary messengers in the regulation of enzyme activity. Units of enzyme activity.

4. Classification and nomenclature of enzymes.

5. The use of enzymes in medicine.

6. The history of the development of the doctrine of biological oxidation: the theories of Bach, Palladin.

7. The Krebs cycle is a universal stage in the utilization of proteins, fats and carbohydrates and the formation of tissue respiration substrates. Reactions, the energy balance of one revolution.

8. The oxidase pathway of oxygen use in the cell is oxidative phosphorylation.

9. The structure of the components of the redox chain, their localization and functions in the inner membrane of mitochondria. The mechanism of conjugation of oxidation and phosphorylation.

10. P/O ratio. Mitchell's chemiosmotic theory.

11. Respiratory control as the main mechanism of regulation of the conjugation of oxidation and phosphorylation. Mechanisms of dissociation of oxidation and phosphorylation.

12. Mono- and dioxygenase pathways of oxygen utilization in the cell.

13. Peroxidase and radical ways of using oxygen.

14. Carbohydrates, classification.

15. Mechanisms of carbohydrate digestion. Characteristics and action of enzymes involved in the abdominal and parietal digestion of carbohydrates. Mechanisms of carbohydrate absorption.

16. Impaired digestion and absorption of carbohydrates – malabsorption syndrome: concept, biochemical causes, metabolic disorders and consequences, mechanisms of development of the leading typical symptoms.

17. Ways of intake and conversion of carbohydrates in body tissues. Glucose transporters: types, structural features, functions.

18. Anaerobic glycolysis.

19. Aerobic glycolysis.

20. Pyruvate dehydrogenase complex: composition, structure, function.

21. Mechanisms of shuttle transport of glycolytic hydrogen through the mitochondrial membrane.

22. The Pasteur effect, meaning.

23. Glucose catabolism by the mechanism of the pentose phosphate pathway.

24. Glycogen metabolism (breakdown and synthesis).

25. Hyper- and hypoglycemia: causes, mechanisms of urgent and long-term compensation. Metabolic and clinical consequences of acute and chronic hyper- and hypoglycemia.

26. Type I and II diabetes mellitus: causes, metabolic disorders, clinical manifestations, biochemical diagnosis, prevention.

27. Biochemical causes and mechanisms of development of acute complications of diabetes mellitus: hyper- and hypoglycemic coma.

28. Biochemical mechanisms of development of chronic complications of diabetes mellitus: neuropathies, micro- and macroangiopathies and related metabolic and clinical manifestations and consequences, prevention.

29. Biochemical diagnostics of carbohydrate metabolism disorders.

30. Galactose metabolism, galactosemia.

31. Fructose metabolism, fructosemia.

32. The most important lipids of animal and plant origin, their classification, structures, properties, and biological role.

33. Mechanisms of digestion and absorption of lipids. Lipolytic enzymes, bile. Steatorrhea: causes, consequences.

34. Blood transport lipoproteins. Classification of hyperlipoproteidemia.

35. Biosynthesis of triacylglycerides.

36. Biosynthesis of phospholipids.

37. The role of carnitine in the transport of fatty acids.

38. Mechanisms of β -oxidation of fatty acids: stages, reactions, regulation, energy balance.

39. Mechanisms of lipid peroxidation, importance in cell physiology and pathology.

40. Biosynthesis of fatty acids.

41. Synthesis of cholesterol. Hypercholesterolemia. Atherosclerosis. The coefficient of atherogenicity.

42. Mechanisms and levels of regulation and integration of lipid metabolism (central, interorgan, metabolic).

43. Obesity: age and gender characteristics, calculated indicators of the degree of obesity, biochemical causes, biochemical diagnosis, complications, mechanisms of interrelation with diabetes mellitus and atherosclerosis.

44. Amino acids. Classification, biological role.

45. Peptides, groups of peptides by physiological significance.

46. The structural organization of proteins.

47. Classification of proteins. Simple proteins.

48. Classification of proteins. Complex proteins

49. Nitrogen balance.

50. Digestion of proteins in the gastrointestinal tract. Proteolytic enzymes. Formation and secretion of HCl. Enzymatic hydrolysis of proteins in the gastrointestinal tract.

51. Putrefaction of proteins in the intestine. The role of UDP-glucuronic acid and PAPS in the processes of neutralization and elimination of putrefaction products.

52. Impaired digestion and absorption of proteins. Protein deficiency: causes, metabolic and clinical consequences, prevention.

53. Common pathways of amino acid metabolism. Transamination reactions.

- 54. Common pathways of amino acid metabolism. Deamination reactions.
- 55. Common pathways of amino acid metabolism. Decarboxylation reactions.
- 56. Ways of using nitrogen-free amino acid residues.
- 57. Ornithine cycle.
- 58. Structural organization of DNA.
- 59. The structural organization of RNA.
- 60. Types of RNA.
- 61. DNA synthesis. Stages of replication.
- 62. Repair of errors and DNA damage.
- 63. Biosynthesis of RNA. The stages of transcription.
- 64. Post-transcriptional modifications of RNA.
- 65. Properties of the genetic code.
- 66. Protein biosynthesis. Stages of the broadcast.
- 67. Hormones, classification, properties.
- 68. A unified functional system of hormonal regulation.
- 69. Mechanisms of action of hormones on target cells.
- 70. Adenylate cyclase system.

71. Phosphoinositide system.

72. The mechanism of action of steroid hormones and thyroxine.

73. Thyroid gland, hormones, hypo- and hyperfunction.

74. Parathyroid glands, hormones, hypo- and hyperfunction.

75. Pancreas, hormones, hypo- and hyperfunction.

76. Adrenal medulla, hormones, pathology.

77. Adrenal cortex, glucocorticoids, pathology.

78. Adrenal cortex, mineralocorticoids, pathology.

79. Biochemistry of the muscular system. A muscle fiber is a functional unit of muscle tissue. Features of its structure, intracellular and chemical composition. Features of the metabolism of proteins, carbohydrates, lipids.

80. Mechanisms of contraction, regulation and energy supply, at rest and load, in various types of muscle tissue.

81. The main functional disorders of the muscles: myopathy, myodystrophy, coronary heart disease, myocardial infarction - biochemical causes, metabolic disorders, consequences.

82. Biochemistry of the nervous system. The brain: the chemical composition of the dry residue, white and gray matter, neurons, synapses, nerve fibers. Features of metabolism – energy, carbohydrate, lipid, protein, amino acid, nucleotide.

83. Biochemical foundations of nervous activity, mechanisms of transmission of a nerve impulse along a nerve fiber. Types of synapses and receptors, neurotransmitter exchange and mechanisms of nerve impulse transmission through synapses.

84. Physiologically active peptides of the brain and the biochemical basis of emotions, memory, pain, sleep.

85. Metabolic disorders of biogenic amines in mental conditions. Biochemical parameters of blood and urine, reflecting the functional state of the nervous tissue.

86. Biochemistry of the liver. The role of the liver in carbohydrate, lipid and protein metabolism. Bilirubin exchange. Jaundice.

87. Vitamins: definition, classification and nomenclature. Types of vitamin metabolism disorders: hyper-, hypo-, vitamin deficiency.

88. Water-soluble vitamins.

89. Fat-soluble vitamins.

90. Vitamin-like substances.

EXAMINATION CARD № 1

on the discipline "Biochemistry"

Question 1. Chemical nature, physico-chemical properties and biological role of enzymes. Localization and compartmentalization of enzymes in cells and tissues. Question 2. Fructose metabolism, fructosemia. Question 3. Ways of using nitrogen-free amino acid residues.

The examination cards were reviewed and approved at the department meeting dated $\ll\!12\!\!>$ March 2024, record no. 7

Head of the Clinical Medicine Department _____ Krivenko O.G.

Grade	Answer assessment criteria
Excellent	Student understands the material thoroughly; reproduces it fully, clearly and
	logically; applies theory to practice; has no inhibitions in answering an altered question.
	Uses specific terminology; demonstrates extensive knowledge in the subject;
	provides references to specialized resources, including online-resources, while
	answering the questions.
Good	Student understands the material thoroughly; reproduces it logically and to the point,
	without major errors in answering the question; uses specific terminology well; may
	experience some difficulties in answering clarifying questions on the subject;
	generally demonstrates extensive knowledge in the subject
Satisfactory	Student understands only basic material without details; makes mistakes and not fully
	correct wording; is poorly familiar with specific terminology; makes significant
	mistakes in answering; poorly uses special information resources.
Unsatisfactory	No answer to the posed question was given.

The grade, earned at the examination, is then converted into points ("5/excellent" – 20 points; "4/good" – 15 points; "3/satisfactory" – 10 points) and is added to the points, earned during the current assessment.

Final grade	Total sum of points	Assessment criteria
Excellent	91 - 100	All checkpoints of the formative assessment have been completed at a high level. The exam is passed.
Good	81-90	All checkpoints of the formative assessment have been completed. The exam is passed.
Satisfactory	70- 80	Checkpoints of the formative assessment have been completed partially. The exam is passed.
Unsatisfactory	69 or less	Checkpoints of the formative assessment have not been completed or the exam is not passed

5. <u>Diagnostic tasks</u> for the assessment of educational results in the discipline (module) within the framework of internal and external independent assessment of the quality of education

Assessment materials contains tasks for assessing knowledge, skills and abilities that demonstrate the level of competence mastery and indicators of their mastery.

The set of tasks is designed so as to assess each competence in written form.

The set of tasks includes: *multiple-choice test and test with detailed answer*.

Set of tasks for diagnostics

Variant 1

Гest	1. Source of ribose-5-phosphate formation for nucleotide synthesis:
	A. glycolysis;
	B. ornithine cycle;
	C. the pentose phosphate pathway of glucose oxidation;
	D. Krebs cycle.
	2. Na+-K+-ATPase is activated under the condition of:
	A. increasing the concentration of Na+ ions in the cell;
	B. excess ATP in the cell;
	C. increasing the concentration of K+ ions in the cell;
	D. reducing the concentration of Na+ in the cell;
	E. increasing the electric potential difference on the membrane.
	3. The membranes include:
	A. hydrophobic proteins;
	B. cholesterol esters;
	C. amphiphilic proteins and lipids;
	D. sphingozin;
	E. triacylglycerol.
	4. Which enzymes are involved in lipolysis of triacylglycerol:
	A. phospholipase A;
	B. lipases;
	C. Phosphatase;
	D. Phospholipases;
	E. phosphodiesterase.
	5. Transcription enzyme:
	A. DNA polymerase;
	B. DNA helicase;
	C. RNA polymerase;
	D. DNA topoisomerase.
	6. As a result of the deamination reaction, the cleavage of occurs
	amino group
	7. With facilitated diffusion, substances are transferred through the membrane
	concentration.
	by gradient
	8. The hormone activates lipogenesis
	insulin
	9. The sequence of DNA nucleotides recognized by RNA polymerase as a starting point
	for the start of transcription,
	the promoter
	10. Pentose is a part of RNA.
	ribose
Case task	How many ATP molecules are synthesized during oxidation:
	one molecule of pyruvate to 2-oxoglutarate;
	one molecule of isocitrate to succinate;
	one molecule of succinate to oxaloacetate,
	provided that dehydrogenase reactions are associated with the respiratory chain?
	In the 1st case, 6 ATP molecules are synthesized; in the 2nd - 7 ATP molecules; in th
	3rd -em - 5 ATP.
ОПК-5 Са	n analyze morphofunctional and physiological indicators as well as pathological
processes i	n human body to achieve professional goals
Гest	1. The greatest activity of aspartate transaminase is found in:

	B. kidneys;
	C. lungs;
	D. the heart;
	E. pancreas.
	2. The content of glucocorticoids in the blood increases with:
	A. chronic adrenal insufficiency;
	B. Itsenko-Cushing syndrome;
	C. pheochromocytoma; D. Addison's disease;
	E. prolonged use of cytostatic agents.
	3. What is the most typical sign of vitamin K deficiency in the body:
	A. damage to the nervous system;
	B. tendency to thrombosis;
	C. increased bleeding;
	D. Osteomalacia.
	4. Which bilirubin is formed in hepatocytes after the addition of glucuronic acid residues
	to it:
	A. direct bilirubin;
	B. indirect bilirubin.
	5. What is the main cause of hypoproteinemia in patients with severe liver parenchyma
	damage:
	A. loss of plasma proteins in urine;
	B. disruption of plasma protein biosynthesis processes;
	C. enhanced catabolism of plasma proteins.
	6. The biological effect of aldosterone is to increase reabsorption of in the kidneys.
	sodium
	7. In primary hypothyroidism, hormone level is increased.
	thyroid- stimulating
	8. The protein that transports iron in the blood is
	transferrin
	9 diabetes develops with a lack of vasopressin.
	diabetes insipidus
	10. The transformation of fibrinogen into fibrin is catalyzed by the enzyme
	thrombin
Case task	Eating confectionery and sweets causes vomiting and diarrhea in a child. He does not
	tolerate sweet tea well, whereas milk does not cause negative reactions. Make a suggestion
	about a molecular defect.
	It can be assumed that disaccharidase is caused by the absence of sucrose. A possible
	cause of these symptoms may also be hereditary fructose intolerance (fructose-1-
	phosphate aldolase defect).

Variant 2

YK-1 Ca situation	n design action plans and apply systematic approach to critical analysis of problem s
Test	1. As a result of transamination, the amino acid is converted into:
	A. α-hydroxyacid;
	B. α-ketoacid;
	C. β-hydroxyacid;
	D. aldehyde acid.
	2. Substrate phosphorylation in glycolysis occurs in a reaction catalyzed by:
	A. hexokinase;
	B. phosphofructokinase;
	C. pyruvate kinase;
	D. enolase.
	3. Ca2+- ATP-ase is localized in:
	A. plasma membrane;

	B. EPR membrane;
	C. the inner membrane of the mitochondria;
	D. the EPR membrane and the inner membrane of mitochondria;
	E. plasma membrane and EPR membrane.
	4. Thymidylic acid is formed from:
	A. deoxyuridylic acid;
	B. deoxyadenylic acid;
	C. deoxyguanylic acid;
	D. deoxycytidylic acid;
	E. uridylic acid.
	5. Palmitic acid:
	A. monounsaturated;
	B. contains three double bonds;
	C. contains two double bonds;
	D. saturated.
	6. The main energy substrate for nerve tissue cells is
	glucose
	7. Esters of higher monobasic fatty acids and primary monatomic high molecular weight
	alcohols are
	waxes
	8. Removal of introns in pre-RNA
	splicing
	9. Bonds stabilizing the α -helix,
	hydrogen
	10. In the presence of oxygen, pyruvate is converted to
	acetyl-CoA
Case task	How many ATP molecules can be synthesized due to the oxidation energy of 1 glucose
	molecule to CO2 and H2O under the following conditions:
	a) all elements of the respiratory chain function;
	b) pyruvate dehydrogenase is blocked;
	c) destroyed mitochondria.
	a) if all elements of the respiratory chain are functioning - 38 ATP; b) if NADH
	dehydrogenase - 8 ATP is blocked; c) if mitochondria - 2 ATP are destroyed due to
	glycolysis.
ОПК-5 Са	analyze morphofunctional and physiological indicators as well as pathological
Test	n human body to achieve professional goals
	<i>in human body to achieve professional goals</i> 1. Irreversible damage to cardiomyocytes is accompanied by an increase in serum:
	1. Irreversible damage to cardiomyocytes is accompanied by an increase in serum:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase;
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT;
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase;
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB.
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. 2. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. 2. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. 2. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 I. Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. 2. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:
	 Irreversible damage to cardiomyocytes is accompanied by an increase in serum: A. alkaline phosphatase; B. ALT; C. Gamma-glutamyltransferase; D. CK-MB. Under the influence of ACTH, it is activated by:

	5. Which substance is the starting material for the synthesis of adrenaline and
	norepinephrine:
	A. tyrosine;
	B. glycerin;
	C. glucose;
	D. cholesterol.
	6. Mercaptan is a decomposition product of amino acids.
	sulfur-containing
	7. Fatty acids are transported in the blood with the help of proteins albumins
	8. Vitamin is necessary in the hydroxylation reactions of proline and lysine in the composition of procollagen during its maturation. C
	9. Enzymes involved in the hydrolysis of phospholipids phospholipases
	10. The synthesis of almost all proteins in eukaryotes begins with an amino acid methionine
Case task	The child's blood glucose was determined in the laboratory. Before that, he was crying.
case tusk	The analysis showed an increased glucose content. Is it possible to say that a child has
	diabetes mellitus?
	(What hormones regulate blood glucose levels? What is diabetes mellitus?)
	The child has hyperglycemia due to stress.